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Best rational approximation over the whole complex plane is investigated. While
existence is elementary, there is not always uniqueness---every constant may be the
best constant approximation tof(z) = z. However, under certain circumstances, the
set of best approximations is, in a sense, bounded. When f has singularities of
planar Lebesgue measure zero, the error corresponding to best approximation
converges to zero, and the best approximations converge in measure.

1. MOTIVATION

If one forms a sequence of rational approximations with free (that is,
unrestricted) poles, using only function values on a bounded set, it is well
known that the sequence can diverge very badly outside this bounded set,
even when the function approximated is entire. This is true whether the
rational functions are formed by interpolation, or by best approximation in
some norm. Hence it is of interest to study what happens when one uses
function values throughout the plane. Here we form best approximations by
minimizing an integral of a bounded distance function, over the whole plane.
While best approximations exist, they are not unique in general, but the set
of best approximations is "bounded" under certain circumstances. Further,
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provided the function approximated has singularities of measure zero, the
error corresponding to best approximations converges to zero, and the best
approximations converge in measure. A necessary condition for a
polynomial to be a best approximation is established, and estimates of the
error are obtained for certain functions.

2. NOTATION

(i) Throughout, meas will denote planar Lebesgue measure and Ii a
fixed (non-negative) regular Borel measure on the finite complex plane C
such that

ffdli = fJ~ dli(z) = 1. (2.1 )

We shall assume that Ii is absolutely continuous with respect to meas. The
most interesting case is when supp [Ii] = C, but we do not exclude the case
supp [Ii ) =1= C.

(ii) Throughout D(z, u) will denote a fixed function defined and
continuous on C X C satisfying there:

D(z, u) E [0, 1),

D(z, u) = D(u, z),

D(z, u) = 0 <:> z = u.

We also assume that for each z E C,

D(z, (0) = lim D(zo' u) exists and is positive.
lui-He

zo ....... z

(2.2A)

(2.2B)

Finally we set D(00, (0) = O. Corresponding to D, we define a distance
between (Borel) measurable functions f, g: C --+ C U {oo} by

PD(f, g) =ffD(f, g) dli· (2.3)

Of course, when D satisfies the triangle inequality in addition to (2.2A, B),
then PD also satisfies that inequality and is a metric on the space of all
(equivalence classes of) functions f: C --+ C U {oo} that are finite valued a.e.
(P) and are (Borel) measurable.
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(iii) An example of a D(z, u) is Dt(z, u), the square of the usual
chordal metric on the Riemann sphere

(2.4 )

We put

(2.5)

A second important example of D(z, u) is

(2.6)

where

fP: [0, 00 ]-t [0, 1] is continuous and non-decreasing with

We set

0= fP(O) < fP(x) < fP( (0) = 1 for all x E (0, 00 ). (2.7)

(2.8)

An important and typical case is fP(u) = (u'" /(1 +u"'))Il, where a, fJ > O. In
the theory of Orlicz spaces, one encounters distances similar to p~ but with
fP convex and fP( 00 ) = 00; by contrast the fP's that satisfy (2.7) are typically
concave.

(iv) ~mn will denote the class of rational functions with complex coef­
ficients and with numerator degree at most m and denominator degree at
most n (m, n = 0, 1, 2,... ). Each R E ~mn' not identically zero, has the
unique representation

where c*-O and

(2.9A)

O~m'~m"~m;

IYil~1 foralll~i~m';

IZil~1 foralll~i~n';

and no Yi is a Zj'

O~n' ~n" ~ n;

IYil> 1 for all m' <i~m"; (2.9B)

IZil>1 foralln'<i~n";
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The coefficient c in (2.9A) will be called the principal coefficient of R. The
principal coefficient of 0 is O. 3'm will denote the class of polynomials of
degree at most m with complex coefficients.

(v) The (Borel) measurable functionsf: C -+ C U {oo} considered will
often be restricted to satisfy

lim ,u{z: If(z)1 > r} = 0
r--<co

,u{z: If(z)1 = oo} = O.

or, equivalently,

(2.10)

By saying a function f has singularities of meas 0 in an open set C?J' c C is
meant that there is a closed set gee such that meas (g) = 0 and such that
fis analytic in each of the (at most denumerably many) components ofC?J'\g.

(vi) Given a measurable f: C -+ C U {oo} and m, n = 0, 1,2,..., define

and

EmnD(f) = inf{PD(f, R): R E ~mn} (2.11 )

(2.12)

Thus .9JmnD(f) is the set of PD-best approximations toffrom ~mn' When
D = D 1 or D = D.p, we shall replace the subscript D in EmnD(f), .9JmnD(f)
by 1 or tP, respectively.

When D (and hence PD) satisfies the triangle inequality, we are dealing
with best rational approximation in the linear metric space of all
(equivalence classes of) measurable functions satisfying (2.10). See Albinus
[1] for a survey of best approximation in real linear metric spaces.

3. PROPERTIES OF PD

In this section, we establish some properties of PD' Many of these are
trivial when D is a metric, but require proof in the general case where D does
not satisfy the triangle inequality.

LEMMA 3.1. Let f, f1'f2 ,... : C -+ C U {oo } be measurable and let f satisfy
(2.10). The following are equivalent.

(i) fk-+f in measure (.u): that is, for all e> 0, limk--<co,u{z: If(z)­
fk(Z)1 ~ e} = O.

(ii) Every subsequence of {fd has a subsequence converging a.e. (.u)
to f.

(iii) limk--<co PD(fk,f) = o.
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Proof. (i) <::> (ii) is easy and well known.

(ii) => (iii). Given any subsequence of 1,2,... we can extract from
it a subsequence Y so that limk~OO.kEy,jk(z)= f(z) a.e. (P). Then
limk~OO.kE.Y'D(fk(Z),f(z» = 0 a.e. (P) and so, by Lebesgue's Dominated
Convergence Theorem, limk~oo.kE!/PD(fk,f) = O. As every subsequence of
{fd contains such a subsequence {fdkEY" the result follows.

(iii) => (i). Let e, 'fl > 0 be given. Choose r> 0 such that

,u{z: If(z)1 ~ r/2} < 'fl. (3.1)

As D(z, u) is continuous in {(z, u): Izl:;;; r.lul:;;; r} and vanishes iff z = u, we
see that there exists fJ > 0 such that

Izl:;;; r, and Iz - ul ~ e => D(z, u) ~ fJ. (3.2)

Further (2.2B) gives

a = inf{D(z. u): Izl:;;; r/2 and lui ~ r} >O.
Finally,

{z: If(z) - fk(z)1 ~ e} elf;, U ~ u "r,

where

If;, = {z: If(z)1 :;;; r, Ifk(z)1 :;;; rand If(z) - fk(z)1 ~ e},

~ = {z: If(z)l:;;; r/2 and Ifk(Z)1 ~ r},

7~ = {z: If(z)1 ~ r/2}.

Here

(3.3)

(3.4 )

(by (3.2»

:;;;ff D(f(Z),fk(z»/O dp
(Z:D(!(z),fk(Z» ;;>c5}

:;;; (l/fJ)PD (f,fk)--+ 0 as k--+ 00.

Similarly,

p(~) :;;;p{z: D(f(z),fk(z» ~ a} (by (3.3»

:;;;(I/b)PD(f,fk)--+O as k--+oo.

Finally p(']:/') < 'fl by (3.1) so that (3.4) implies the result as 'fl > a was
arbitrary. Q.E.D.

We can now establish continuity of PD(f, g).
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LEMMA 3.2. Let f, II, fz'"'' g, gl' gz,"': C ~ C U {oo} be measurable
and suppose that at least one off, g satisfy (2.10). Then ijlimk _HXJ PD(f,fk) =
0= limk_HXl PD(g, gk)' we have limk_HXl PD(fk' gk) = PD(f, g).

Proof. Assume f satisfies (2.10). By Lemma 3.1, every subsequence of
ifk! contains a subsequence {fk!kEY such that a.e. (u)

limfk(Z) =f(z).
k-+oo
kEY

(3.5)

Since limk-+ooPD(g,gk) = 0, we have limk-+oo,uiz: D(g(z), gk(Z»:;;:: e} = 0, for
all e >0, and hence Y contains a subsequence (denoted also by Y for
convenience) such that a.e. (u)

lim D( g(z), gk(Z» = O.
k-+oo
kEY

(3.6)

Let ~ ~ {z: I g(z)1 = oo}. If z E~, then, by (2.2A, B), limk-+OO.kEygk(z) =
g(z) provided (3.6) holds. Thus continuity of D and (3.5), (3.6) give

lim D(fk(Z), gk(Z» = D(f(z), g(z»
k-+oo
kEY

for ,u-almost all z in C\~. (3.7)

If z E ~ and (3.6) holds, we have, in view of (2.2B), that
limk-+oo.kEY Igk(z)1 = 00. Provided If(z)1 is finite and (3.5) holds, we deduce
limk-+oo.kEY D(fk(Z), gk(Z» = D(f(z), (0) = D(f(z), g(z». Thus

lim D(fk(Z), gk(Z» = D(f(z), g(z»
k-+oo
kEY'

for ,u-almost all z in ~. (3.8)

Using Lebesgue's Dominated Convergence Theorem, (3.7), (3.8) yield
limk-+ oo .kEY PD(f, gk) = PD(f, g). As every subsequence of 1,2,... contains
such a subsequence Y, the result follows. Q.E.D.

As a consequence of the above lemma, PD-limits are unique: that is, if
limk-+ oo PD(fk,j) = 0 and limk-+ oo PD(fk' g) = 0, and either f or g satisfies
(2.10), then f = g a.e. (u).

LEMMA 3.3. Let f, f1,fZ ,... : C ~ C U {oo} be measurable and satisfy
(2.10). The following are equivalent.

(i) There exists a measurable function f satisfying (2.10) such that
limk-+ oo PD(Jk,f) = O.

(ii) {fk! is fundamental in measure (u): that is, for all e > 0,
limm-+ oo .k-+ oo ,u{z: Ifk(Z) - fm(z)1 :;;:: e} = O.

(iii) limm-+oo,k-+oo PD(Jk,fm) = 0 and lim r -+ oo SUPk;> l,uiz: Ifk(Z)I:;;:: r} = O.
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Proof. (i)~ (ii). By Lemma 3.1, fk-+f in measure (,u). Hence [3,
Theorem C, p. 921 {fk} is fundamental in measure (,u).

(ii) ~ (i). By [3, Theorem E, p. 93] there is a measurable function f,
finite valued a.e. (,u), such that fk-+f in measure (,u). Hence (2.10) holds.
(Note that, although these two quoted theorems are stated for real functions,
they are valid, without changes, for complex functions as well.)

(i) ~ (iii). Let 1::;; m(l) < m(2) < ... be integers, and set gk =fmlkP
k = 1,2,.... Then limk--> 00 PD(gk,f) = 0 = limk-->oo PD(fk,f), so Lemma 3.2
implies limk--> 00 PD(gk,fk) = O. Since this held for any such m(k), k = 1,2,... ,
we deduce limm -->oo.k-->00 PD(fk,fm) = O. Next, given e > 0, choose r> 0 such
that ,u{z: If(z)1 ~ r} ::;; e/2 and choose ko~ 2 such that k ~ ko~ ,u{z:
If(z) - fk(Z)1 ~ r}::;; e/2. Then k ~ ko~ ,u{z: Ifk(Z)1 ~ 2r} ::;;,ulz: Ifk(Z)­
f(z)1 ~ r} + ,u{z: If(z)1 ~ r} ::;; e. By increasing r, if necessary, we can assume
that the last inequality holds also for k = 1,2,..., ko - 1. The result follows.

(iii) ~ (ii). Let 77, e > O. Choose r> 0 such that

sup ,u{z: Ifk(Z)1 ~ r} <e
k;;'l

and choose f> >0 such that

(3.9)

and

Then

imply D(z, u) ~ f>. (3.10)

{z: Ifk(Z) - fm(z)1 ~ 77}

c {z: Ifk(Z)1 ~ r} U {z: Ifm(z)1 ~ r}

U {z: Ifk(Z)I::;; r, Ifm(z)l::;; rand D(fk(z),fm(z)) ~ f>}

by (3.10). So, by (3.9),

,u{z: Ifk(z) - fm(z)1 ~ 77} < 2e +,u{z: D(fk(z),fm(z)) ~ f>}

::;; 2e + (l/f»PD(fk ,fm) -+ 2e as m, k -+ 00.

Q.E.D.

In order to apply the preceding lemmas to rational functions, we need the
following technical lemma.

LEMMA 3.4. Let R E !h'mn have the representation (2.9A, B). Then, given
A ~ 1 > f> > 0, we have lei (2A)-<m+n> f>m::;; IR(z)l::;; lei (2A)m+n f>~n

whenever Iz I ::;; A, z E YJ, where meas(YJ) ::;; 8enf> 2
• If n = 0, YJ = ~.
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Proof We can assume c*,O. Using (2.9A,B), we have, for Izl~A,

and

11 - z/z;1 ~ 1/2

~ Iz - z;I/(2A)

if Iz;1 ~ 2A,

if Iz;1 < 2A

so, if z, ... zn" zn'+1 ... Zl are those poles' of R with 1'1 <2A, then (2.9A)
gives, whenever Izi ~A,

lei (2A)m
IR(z)1 ~ 10:=, (z - z;)1 (l/(2A ))l-n' (l/2)n"-1

~ lei (2A)m+nII t~ (z - z;) /.

By Cartan's lemma (see, for example, [2,pp.174, 195]),10:=1 (z-z;)1 >
t51~ t5n for all z E ~, where meas(Y';) ~ 4ent5 2

• Thus IR(z)1 ~
lei (2A)m+n t5- n whenever Izi ~A, z E Y';.

Replacing R by l/R, we have 11/R(z)1 ~ 11/cl (2A)m+n t5- m whenever
Iz I~ A, z E !Ii, where meas(!Ii) ~ 4ent5 2

• By taking Y' = Y'; U!Ii, the result
follows. Q.E.D.

LEMMA 3.5. Let Y c .9fmn be infinite. For each R E Y, let c(R) denote
the principal coefficient of R. The follOWing are equivalent.

(i) sup{lc(R)I: R EY} < 00.

(ii) Every infinite subset ofY contains a sequence {Rd such that,for
some R E .9fmn , limk~oo PD(Rk, R) = 0.

(iii) limr~oo SUPRE y.u{z: IR(z)1 ~ r} = 0.

(iv) Whenever {Rd cY satisfies limk~oo PD(Rk, g) = ° for some
measurable g: C -+ C U { oo}, we have g E .9fmn'

Proof Note, first that .9fmn (and hence ,7) is a normal family, that is,
every infinite subset ofY contains a sequence {Rd such that either for some
RE.9fmn , limk~ooRk(z)=R(z) uniformly in each compact subset of
C\{z: IR(z)1 = oo} or limk~oo IRk(z)1 = 00 uniformly in each compact subset
of C\~, where ~ has at most m elements. This follows easily from
(2.9A, B); the reader may also refer to [7, Theorem XII.1, p.348]. Hence,
every infinite subfamily of Y contains a sequence {Rd such that
limk~oo PD(Rk, R) = 0, where either R E .9fmn or R == 00 in C.
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(i) ~ (ii). Given an infinite subset of Y, extract from it a sequence
{R k} with limit R as above. Let A ~ 1 >0 >0, where 8eno2 < 1. By Lemma
3.4, for all k ~ 1, IRk(z)1 ~ sup{lc(R)I: R EY} (2A)m+n o-n whenever
Izi ~A, z E~, where meas(~) ~ 8eno2 < 1 < 'tA 2

• Hence we cannot have
limk-->oo IRk(z)1 = 00, uniformly in every compact subset of {z: Izi ~A }\Y,
where Y is a finite set, so R i= 00 and, hence, R E /7/mn'

(ii) ~ (iii). If (iii) fails, we can extract from Y a sequence {Rd such
that lim infr --> 00 supk;;' 1 .u {z: IR k(z)1 ~ r} > O. By passing again to a subse­
quence if necessary, we can (in view of (ii» assume limk-->oo PD(R k, R) = 0
for some R E !JRmn . Thus Lemma 3.3(i) can be applied and a contradiction
to Lemma 3.3(iii) ensues.

(iii) ~ (iv). Suppose limk-->oo PD(R k' g) = O. By passing to a subse­
quence if necessary, we can assume limk--.OO PD(R k, R) =0, where either
R E !JRmn or R == 00. But for a suitable r, (iii) gives .u{z: IRk(z)1 ~ r or
Izi ~ r} ~ 1/2 for all k ~ 1 so that .u{z: IRk(z)1 ~ rand Izj ~ r} ~ 1/2 for all
such k. Thus we cannot have limk-+oo IRk(z)1 = 00, uniformly in every
compact subset of {z: Izl ~ r}\Y, where Y is a finite set. Hence R i= 00 and
R E !JRmn . By Lemma 3.2, g = R a.e. (u), so g == R E !JRmn .

(iv) ~ (i). If (i) were false, then we could choose {R j } cY such that
Ic(Rj)1 ~ jj for j = 1, 2,.... By passing to a subsequence if necessary, we can
assume limj-+OOPD(Rj,R)=O, where R E!JRmn or R == 00. Taking A =j > 1,
o =r Z, Lemma 3.4 gives 1R/z)1 ~ l (2j) - (m + n) r 2m whenever 1z 1 ~j, z E Yj
where meas(Yj) ~ 8enr 2

• It follows that limj-->oo IR/z)1 = 00 for almost z
(meas) in iC. Hence R == 00, which contradicts (iv). Q.E.D.

4. EXISTENCE OF BEST ApPROXIMATIONS

THEOREM 4.1. Let f: C --+ C U {oo} be measurable and satisfy (2.10).
Let m, n, be nonnegative integers. If EmnD(f) <PD(f, 00), then

(i) .51JmnD(f) =1= ~.

(ii) sup{lc(R)I: R E .51JmnD(f)} < 00, where c(R) denotes, as before,
the principal coefficient of R.

(iii) .51JmnD(f) is closed with respect to PD' that is, if {Rd c .51JmnD(f)
and limk--> 00 PD(R k, g) = 0 for some measurable g: C --+ C U {oo}, then
g E .51JmnD(f).

(iv) .51JmnD(f) is sequentially compact with respect to PD' that is, every
i1ifinite subset of .51JmnD(f) contains a sequence {R k} such that
limk--> 00 PD(Rk, R) = 0 for some R E .51JmnD(f).
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(v) g]mnn(f) is complete with respect to Pn' that is, if {Rd c g]mnn(f)
and limk--> 00 ,m--> 00 Pn(Rk, R m) = 0, then limk-->oo Pn(R k, R) =° for some
R E g]mnn(f).

Proof. (i) Choose {Rd c !Jfmn such that

(4.1 )

By passing to a subsequence, if necessary, we can assume
limk--> 00 Pn(R k, R) = 0, where R E!Jfmn or R == 00 (as in the proof of Lemma
3.5). By Lemma 3.2 (with all fk=R k, all gk=f), limk-->ooPn(Rk,f)=
Pn(R,f) even when R==oo. Then Emnn(f)=Pn(R,f) (by (4.1»,
contradicting Emnn(f) <Pn(f, (0) if R == 00. Hence R E !Jfmn and
R E g]mnn(f).

(ii) If this were false, then proceeding as in the proof of Lemma 3.5,
(iv) => (i), we could choose {R;} c g]mnn(f) such that lim;-->oo IR;(z)1 = 00 for
almost all z (meas) in C By passing to a subsequence, if necessary, we
obtain lim;-->oo IR;(z)1 = IR(z)1 == 00, uniformly in every compact subset of
C\Y (where Y is finite) and Lemma 3.2 gives Emnn(f) = limi-->oo Pn(f, R;) =
Pn(f, (0), a contradiction.

(iii) If limk--> 00 Pn(R k, g) =° for {Rd c g]mnn(f), then by Lemma
3.5(iv), g E !Jfmn and Lemma 3.2 gives Pn(g,f) = Emnn(f); so g E g]mnn(f).

(iv) Follows from Lemma 3.5(ii) much as (iii) followed from Lemma
3.5(iv).

(v) If {R k}c'~mnn(f) and limk--> 00 ,m--> 00 Pn(R k, R m) = 0, then by (ii)
above and Lemma 3.5(iii), limr-->oo SUPk;;'I,u{Z: IRk(z)1 >r} = 0. By Lemmas
3.3(iii) and (i), there exists a measurable g satisfying (2.10) such that
limk-->ooPn(Rk,g)=O. By Lemma 3.5(iv), gE!Jfmn and Lemma 3.2 shows
g E '~mnn(f). Q.E.D.

Remarks. (i) If one is prepared to regard R(z) == 00 as belonging to
!Jfmn , then the above shows that invariably g]mnn(f)"* ¢.

(ii) Some of the properties of g]mnn(f) stated in Theorem 4.1 are
referred to as "approximative compactness" in the literature.

COROLLARY 4.2. Let D satisfy (2.6), (2.7), (2.8) so that D = D,p. Let
f: C ~ C U {oo} be measurable and satisfy (2.10). Then for all non-negative
integers m, n, Emn,p(f) < 1, and the conclusions of Theorem 4.1 hold.

Proof. We have D,p(f(z), 0) = l1>([f(zt) < 1 = 11>((0) = D,p(f(z), (0)
a.e. (P) so Emn,p(f) < 1 = p,p(f, (0) for all m, n >0. Q.E.D.
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5. NON-UNIQUENESS

We show now that, given an integer n 1= 0, for D = D I every constant is a
best constant approximation to f(z) = zn for a certain measure f.J. This is
rather disappointing, as one would expect that DI-the square of the usual
chordal metric on the Riemann sphere-would be the natural metric to use
in best approximation over the whole complex plane.

LEMMA 5.1. Let f: iC -4 iC be measurable and write f(z) = If(z)1 eih(z) for
all z E iC. Then if

12= -2 JJIf I (cos h)(lfI 2+ 1)-1 df.J,

13 = -2 JJIf I (sin h)(lfI 2+ 1)-1 df.J,

14 = JJ(lfl 2+ 1)-1 df.J,

we have for each s ~ 0, 8 E [0, 2n), the equality PI (f, seifJ ) =
{II + s(I2cos 8 + 13 sin 8)}/(l + S2) + 14 , In particular, if I, = 12= 13 = 0,
then PI (f, u) = 14 for all u E iC.

Proof

If(z) - se ifJ
1
2= Ilf(z)1 ei(h(z)-fJ) - sl2

= (If(z)1 2
- 1) - 2s If(z)1 {(cos h(z))(cos 8)

+ (sin h(z))(sin 8)} + (S2 + 1).

Dividing by (If(zW + 1)(s2 + 1), we obtain DI(f(z), seifJ ) and integrating
with respect to df.J gives the result. Q.E.D.

THEOREM 5.2. Let n 1= 0 be an integer. Let

(x = Re z,y = 1m z)

for all Borel sets Y', where w is an integrable non-negative function on
(0, 00 ) satisfying

.00t w(r) dr = 1 and
.00 r 2n - 1

J 2n 1 w(r) dr = 0
o r +

(5.1)
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(w(r) = Inl r2n-l(r2n + 1) exp(-r2n ) satisfies (5.1». Then for fez) = zn, we
have PI(f, u) = Eool(f) for all u E Co

Proof Using the notation of Lemma 5.1, we have cos(h(re ilJ
)) = cos nO

for all real 0 and all r ~ O. Also

12= -2 JJ If I (cos h)(lfI 2+ 1)-1 d;J

= -(lin) rr If(z)1 (cos h(z»(lf(z)I Z + 1)-1 w(lzl) Izl-' dx dy
• ·C

.(1) .2"

=-(lln)j I rn(cosnO)(r2n + I)-I w(r)dOdr
. 0 ·0

(x = r cos 0; y = r sin 0)

·ro rnw(r) .z"
=-(lln)! 2n drJ cosnOdO=O.

·0 r + 1 0

Similarly 13 = 0, while (5.1) gives II = O. Q.E.D.

Despite Theorem 5.2, we shall see that the elements of 3JmnD(f) converge
in measure (,u) to f as maxIm, n} -+ 00, so that ~mnD(f) eventually becomes
"small"-in fact Theorem 4.1 shows that 3JmnD(f) becomes "compact" as
soon as EmnD(f) <PD(f, 00).

6. ON CHARACTERIZAnON OF BEST POLYNOMIAL ApPROXIMATIONS

In attempting to characterize 3JmoD(f), it seems natural to look for
analogues of the well-known characterization of best polynomial approx­
imations in L p • For simplicity, we restrict ourselves to D = D", in this
section. Even for such D, we obtain only necessary conditions for a
polynomial to belong to gmo",(f), because of the fact that tP is not convex in
general.

LEMMA 6.1. Let F: gm -+ IR be a functional defined and having Frechet
derivative F' (P) for all P E gm' If F(P *) is a local extrema of F(P) then
F' (P*): gm -+ IR is the zero functional.

Proof Take Y = % = :E = 3'm in Theorem 1.7 in [6, p. 34]. Also, use
the norm II L:j=o ajz

j II = L:j=o lajl on gm' Q.E.D.

By computing the Frechet derivative for p",(f, P), we obtain necessary
conditions for polynomial best approximation.
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THEOREM 6.2. Let D", satisfy (2.6) and (2.7) and let lP'(u) be
continuous in [0, (0) and suppose

K 1 = sUp{U 1
/
2lP'(U): u E [0, oo)} < 00.

Further assume

(6.1 )

I = 0, 1, 2 ... 2m.

Let f: C -+ C U {oo} be measurable and satisfy (2.10). Then

JJlP'(lf- p* 1
2

) Re{(f- P*) Y} dp. = 0

for all Y E gm, P* E ~mo",(f)·

Proof Define F(P) = p",(f, P) for all P E .9'm' and fixing P E .9'm' define

for all Y E .9'm.

We shall show G(Y) is the Frechet derivative of F(P)-the result then
follows from Lemma 6.1. In doing so, we use the same norm on '?m as in
Lemma 6.1. Let z E C and (jp E gm' By Taylor's theorem,

lPClf(z) - (P(z) + (jp(z»n = lP(lf(z) - P(zW) + lP'(1 '(zW) LIz,

where '(z) lies on the line segment between f(z) - P(z) and f(z) - (P(z) +
(jP(z» (with the obvious interpretation when If(z)1 = (0) and where LIz may
be written as

LIz = -2 Re{(f(z)=-P(z» (jP(z)} +I(jP(zW·

Define ",(z) = lP'(1 Z 1
2) z, z E C, and "'(00) = O. We see that

IF(P + (jP) - F(P) - G((jP)1

= 1 2JfRe{ [",(f(z) - P(z» - ",('(z» l (jP(z)} dp.(z)

+j j lP'(I'(z)1 2)[2 Re{[((zY=(J(z)=P(zTIl (jP(z)}

+ I(jP(zWl dp.(z) I

< 211 (jPII JJ1",(f(z) - P(z» - ",('(z» Imax{l, Iz 1m } dp.(z)

+ 3/1(jp/l2 sup{llP'(u)l: u E [0, oo)} JJmax{l, Izl 2m} dp.(z). (6.2)
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Here we have used the inequality IbP(z)1 ~ IIt5PII max{l, Izlm}. Now
Il/I(z)I~KI' zECU{oo}, by (6.1). Further for all zEC, l/I('(z»--->
l/I(f(z)-P(z» as IlbPll--+O (even if If(z)l= (0). By Lebesgue's Dominated
Convergence Theorem, the first integral in the right member of (6.2) --+ 0 as
II bPII---> O. This [6, p. 25] shows that G = F' (P) and the result follows.

Q.E.D.

Remarks. (i) For C/>(u) = ua (1 + ua )-1, u E [0,00], we note that (6.1)
holds if a ~ 1 but not if a > 1. The result can be slightly strengthened to
allow a> 1/2.

(ii) It is possible to obtain a second necessary condition, using C/> fI (u),
but we omit the details.

7. CONVERGENCE

Under mild analyticity restrictions on f, we can show EmnD(f) ---> 0 when
m ---> 00 or n ---> 00 and that sequences of best approximations converge in
measure (p,) to f

THEOREM 7.1. Let ~=supp[.u]\g', where g is a closed set ofmeasO.
Let f be continuous in ~ and analytic in its interior. Let m(1), m(2) ... , n(1),
n(2) '" be non-negative integers such that either m(k) ---> 00 or n(k) ---> 00.
Then

(i) Em(kln(k)D(f) ---> O.

(ii) If R k E !lJm(kln(k)D(f) (k = 1,2,... ), then Rk ---> f in measure (p,).

Proof We can clearly assume f(z) satisfies (2.10) since altering its
values in C\supp[.u] does not affect any !lJmnD(f).

(i) Suppose, first, m(k) ---> 00. Let e > O. Choose r> 0, b > 0 such that

and

.u{z: Izl ~ r} < el3

.u{z: d(z, g) < t5} < e13,

(7.1 )

(7.2)

where d(z, g) = min{1 z - u I: u E g}. Then, ~* = {z: Iz I > r} U
{z: d(z, g') < b} U (C\supp[.u]) is open and so has at most denumerably
many components-<&; , <&; ,..., ~oo, where ~oo is the unbounded one. Join <&;,
~ "', respectively, to ~oo by open rectangles Sf., Sf2 .,. such that

j= 1,2 .. ·. (7.3)
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Then @ = '&'*u (U't:= I .9lj ) is a connected open set;

,jf" = C\@ = jz: Izi ~ r, d(z,.If) ~ f5, zE supp[.u],

and z E jq ,9f
j!

is compact, and f is continuous on Jf and analytic in its interior (as
,yr c '&'). By Mergelyan's theorem [7, p. 367], there are polynomials PI'
P2 ••• such that Pr~ f uniformly in ,jf' and so D(Piz ),f(z)) -4 0 in ,Jf.
Using (7.1), (7.2), (7.3), we see that .u(C\Jf) <c and, hence
lim SUPj--> 00 Pn(Pj,f) < c. As c> 0 is arbitrary, Em(kln(kln(f) -4 O.

Next, suppose n(k) -400. Let c > O. If Y(f5) = {z E '&':f(z) = -f5} then
{Y(f5): f5 E [0, e]} is an uncountable family of disjoint Borel sets. Given a
positive integer I, at most finitely many Y(f5) can satisfy meas(Y(f5) n
{z: Iz I~ l}) ~ 1/1. We deduce meas(Y(f5)) = 0 for all but at most
denumerably many f5 E [0, c]. Choose now f5 E [0, c) for which
meas(Y(f5)) = 0 and set g(z) = (f(z) + (5) -t. Then ,f =.If U,T(f5) is closed
and has meas O. Further we see easily that g(z) is continuous in ,&,\,f and
analytic in its interior. We can, as in the first part of the proof, construct a
compact subset ,ff of ,&,\g' such that g(z) and f(z) are continuous in ,ff and
analytic in its interior, .u(C\ff') < c and c\ff is connected. Mergelyan's
theorem yields polynomials PI' P2 ••• satisfying Piz) -4 g(z), uniformly in
,ff. As f(z) is continuous in ,ff, g(z) has no zeroes there. Further f5 < c.
Thus for some j,

If(z) - I/Piz)1 <c for all z E ,ff; .u(c\ff) < c.

Since c > 0 was arbitrary, we have shown that there are polynomials
Ql' Q2'" such that Qj-l-4fin meas(,u). By Lemma 3.1, Pn(f, Qj-I)-40. It
follows that Em(kln(kln(f) -4 O.

(ii) Follows from Lemma 3.1 and (i). Q.E.D.

Remarks. (i) It is interesting to compare Theorem 7.1 to Pade
convergence theorems. When f has singularities of positive (logarithmic)
capacity, its Pade approximants need not converge in measure in any
neighborhood of zero (no matter how large is the power series' finite radius
of convergence); see [5]. Similar counterexamples hold for more general
rational interpolatory (and best) approximations. Theorem 7.1 shows that
our best approximations converge in measure (P) and hence (locally) in
meas, if meas is absolutely continuous with respect to .u-subject only to f
having singularities of at most meas 0 in C. Thus, f can (in an obvious
sense) have denumerably many natural boundaries and Theorem 7.1 would
still be applicable.

640/36/4-2
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(ii) Theorem 7.1 raises the possibility of a converse theorem: If
EmnD(f) --+ 0 whenever max {m, n} --+ CX) and iff: C --+ C U {oo} is measurable
and satisfies (2.10), then does f have singularities of at most meas O?

(iii) Other natural questions arise: If supp[.u] =1= C, do the poles of best
rational approximations lie in C\supp[.u]? Is every singularity of f a limit
point of poles of best approximations? Is there an analogue of the de
Montessus de Ballon~ Theorem [2]?

8. ESTIMATING EmnD(f)

Explicit information on .u, D andf allows estimation of EmnD(f) in certain
cases.

THEOREM 8.1. Let C/J(u) = (u" (1 + u") -1)'3, U E [0, CX)], where a, fJ > O.
Let Dtp satisfy (2.6) and (2.7). Let .u(W) = c/I- I If :vexp(-c(x2 +y2» dx dy
for all Borel sets 'l/ where c is a positive constant. Thus

-00 ·00

p/p(g,h)=c/I-1J I {lg(z)-h(zW"(1+lg(z)-h(zW,,)-I}1l
-oo~-oo

X exp(-c(x2+ y2» dx dy

(z = x + iy) for all measurable g, h: C --+ C U {CX) }.
Let f: C --+ C be entire of order p < 2. Then

lim sup{Emotp(f)} I/(m log m) ~ exp(afJ(1 - 2p - I» < 1. (8.1)
m~oo

Taking, instead, D = D 1 as in (2.4), (2.5) we have

lim sup{Emol(f)} I/m log m~ exp(l - 2p- l
) < 1.

m~oo

Proof Choose 1/2<[)<p-1 and e>O such that Ll=[p(l+e)]-I­
[) > O. Writingf(z) = Lr~,o ajz j, we have [4, Theorem 14.2, p. 186],

lilp. sup Ia .11/uIOgj) = exp(_p -I).
J~OO J

(8.2)

Then, for large n, lanlnhn~exp(-n(logn)Ll)=n-nA. Setting Pm(z)=
Lbo ajz j, we have, for a111arge m,

00

max{lf(z) -Pm(z)l: Izi ~ mh}~ I r jA
~m-mA. (8.3)

j~m+ 1
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Further,

So

p{z: Izl >mhl = exp(-cm 2h
).

P4>(f, Pm)!{, rf If(z) - Pm(z)1 2a
ll dp + p{z: jzl ~ mh I

•. (z:lzl <;mh)

(8,4)

Here we have used C1J(U
2)!{, u2all all U ~ 0 and (8.3), (8.4). As 6> 1/2, we

deduce

lim sup{Em04>(f) ll/(m log m) !{, exp(-2t1afJ).
m~oo

Finally, as t1 can be made arbitrarily close to P- 1 - 2 - I,

Similarly for D 1 •

Observe the similarity between (8.1) and (8.2).
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